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Abstract—Driven by the goals of efficient and generic communication of noncontiguous data layouts in GPU memory, for which
solutions do not currently exist, we present a parallel, noncontiguous data-processing methodology through the MPI datatypes
specification. Our processing algorithm utilizes a kernel on the GPU to pack arbitrary noncontiguous GPU data by enriching
the datatypes encoding to expose a fine-grained, data-point level of parallelism. Additionally, the typically tree-based datatype
encoding is preprocessed to enable efficient, cached access across GPU threads.
Using CUDA, we show that the computational method outperforms DMA-based alternatives for several common data layouts as
well as more complex data layouts for which reasonable DMA-based processing does not exist. Our method incurs low overhead
for data layouts that closely match best-case DMA usage or that can be processed by layout-specific implementations. We
additionally investigate usage scenarios for data packing that incur resource contention, identifying potential pitfalls for various
packing strategies. We also demonstrate the efficacy of kernel-based packing in various communication scenarios, showing
multifold improvement in point-to-point communication and evaluating packing within the context of the SHOC stencil benchmark
and HACC mesh analysis.
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1 INTRODUCTION

Considerable interest in the HPC community has centered
on the capabilities of graphics processing units (GPUs) as
inexpensive, many-core accelerators. Evidence of this is
seen in recent Top500 lists of supercomputers [1], where
GPU accelerators are gaining in popularity because of their
effectiveness over a wide range of computational loads and
a favorable FLOPs-to-power ratio.

Numerous technical challenges arise from adding a fun-
damentally different computing architecture to existing sys-
tems. Aside from the cost of developing, porting, and
optimizing codes to run on the GPU, a greater concern is
integrating them into algorithms with nontrivial point-to-
point and collective communication patterns. The currently
prevailing GPU accelerator model consists of discrete graph-
ics processing hardware with memory separate from the
CPU’s RAM. Hence, communication operations involving
data resident in GPU memory requires moving data between
GPU and CPU memories, adding another “hop” to the
communication graph. Since the MPI standard [2] does not
define MPI’s interaction with GPU memory managed by,
for example, OpenCL [3] or CUDA [4], the burden of man-
aging distinct memory spaces, especially of noncontiguous
communication, falls on the application developers.

Enabling MPI to interact directly with data stored in GPU
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memory is an important step toward providing transparent
and efficient integration of GPUs into HPC applications.
A challenging problem within this interaction is the com-
munication of noncontiguous data. MPI datatypes enable
such communication for data in CPU memory, allowing
the programmer to define an arbitrary layout of data for
use in MPI operations. A common use of datatypes in
scientific computing is the transfer of noncontiguous array
slices from GPU to GPU in applications such as stencil
computations, which require array boundary updates (cell
exchange) between processes [5], [6], [7].

For the computational benefit of using the GPU to out-
weigh the cost of data transfer into CPU main memory,
these communication operations must be performed with
minimal overhead. The naive solutions of transferring point
by point and transferring the entire noncontiguous buffer
to the CPU are unacceptable from a performance point of
view, suffering from unacceptably high latencies and wasted
bandwidth, respectively. To achieve a sufficiently coarse
transfer granularity when working with noncontiguous data,
one must pack the data into a contiguous buffer prior to
transfer. While effective packing implementations exist for
noncontiguous data residing in CPU memory [8], no gener-
alized packing methodology exists for data residing within
GPU memory that takes advantage of GPU parallelism and
memory bandwidth.

In this work, we present the design of an efficient, in-
GPU noncontiguous datatype processing system. We focus
on NVIDIA’s CUDA interface, although the techniques
presented are applicable across accelerator hardware and
programming models. We develop a datatype representa-
tion that exposes fine-grained parallelism, and we utilize
a GPU kernel to leverage this parallelism to accelerate
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data movement. We demonstrate comparable or better non-
contiguous data packaging compared with CUDA’s built-in
transfer routines, with low overhead compared with hand-
coded packing kernels. We demonstrate up to 700% end-
to-end latency improvement for performing large, noncon-
tiguous vector data communication. In addition, our system
supports arbitrary datatypes for which, to our knowledge,
no equivalent exists (though exposing GPUs to MPI and
other distributed programming models is an active area of
research [9], [10], [11], [12], [13], [14]—see Section 1 of
Supplementary Material). We also evaluate the impact of
resource contention for GPU cores and access to the PCIe
bus. To realize these design goals, we identify and address
three key challenges in enabling efficient processing of MPI
datatypes in GPU memory:

1. Datatype Representation in GPU Memory: As a first
step toward building an efficient packing algorithm, we
develop a GPU-optimized serialized datatype representation
for arbitrary MPI datatypes in GPU memory, separated
into a cacheable, constant-length parameter space, and a
variable-length parameter space.

2. Parallel GPU Packing Kernel: We identify a fine-
grained, dependency-free parallel packing strategy based
on canonical datum identification and a traversal algorithm
based on the packing strategy and datatype representation,
in order to better match GPU hardware characteristics.

3. Packing in the Presence of Resource Contention: The
scheduling policy of GPU kernels and PCIe activity prevents
resource sharing to the degree operating systems and CPUs
allow; a packing operation could starve in the presence of
another resource-intensive kernel. Different communication
patterns may necessitate different packing strategies. We
present experimentation illustrating such effects.

This paper is organized as follows. In Section 2 we
provide an overview of MPI datatypes and their optimized
processing in CPU memory, as well as necessary concepts
in efficient GPU algorithm design. Section 3 discusses the
optimization of the datatype representation and describes the
packing algorithm, given the GPU datatype representation.
A detailed evaluation of GPU datatype processing is given
in Sections 4 and 5. In Section 6 we provide concluding
remarks and discussion.

This paper is an extended version of a previously pub-
lished paper [15]. In this paper, we provide a substan-
tially expanded set of experimental results, including ap-
plication benchmarks, comparison with MVAPICH GPU-
enabled communication, and a more complete set of derived
datatypes in microbenchmarks.

2 BACKGROUND
2.1 MPI Datatypes Specification
The Message Passing Interface (MPI) standard [2] speci-
fies the definition of datatypes, allowing users to portably
communicate noncontiguous data between processes with
minimal effort, while efficiently utilizing network resources.
For instance, a noncontiguous column vector can be defined
by using a vector type, as shown in Figure 1. In this
example, the datatype CS has a stride of five elements

Fig. 1. An array slice, an MPI vector datatype CS encod-
ing it, and the slice’s packed form. The corresponding
datatype initializer (for C element type double) is
MPI_Type_vector(3, 2, 5, MPI_DOUBLE, &CS).

and a blocklength of two elements. The stride encodes the
distance between consecutive blocks, while the blocklength
encodes the number of datatype children per block. Other
datatypes include a subarray defining an n-dimensional
subvolume, an indexed set of location-blocklength pairs
with a homogeneous underlying datatype, and a struct

consisting of location-blocklength-datatype tuples.

The most powerful aspect of the datatypes specification
is support for composition, layering datatypes to create
complex selections of data within a simple and concise
API. For instance, the “elements” of CS could themselves
be datatypes such as array subvolumes, and the packing
operation would pack, for each “element” of CS, the data
specified by the datatype. Primitive datatypes, such as inte-
ger and floating-point variables, form the basis for derived
datatypes, such as MPI vectors, which can be defined in
terms of either primitive or other derived types.

In order to avoid initiating I/O or network operations for
each individual piece of data, MPI implementations pack the
data into contiguous buffers. For the computational aspect of
this process to be efficient, a simple datatype representation
must be provided that allows for fast traversal of the
datatype. Datatype traversal refers to computing offsets in
the input buffer for each primitive defined by the datatype.
While datatypes are formally described as a list of �type,
displacement� pairs, in practice they are encoded by using
a tree structure, where each node in the tree represents a
datatype. This structure, as well as necessary parent-child
relationships, is captured in the MPICH implementation
of dataloops [8], which records type-specific parameters
and propagates information about datatypes necessary for
a simple traversal. Specifically, the extent and size of child
datatypes drive the processing algorithm, where the extent
is the distance between successive child data types and the
size is the amount of contiguous data encoded by the type.

MPICH processes datatypes by unrolling a depth-first
search on the tree structure, using a concise stack-based
representation. Each stack element records type-specific
parameters, such as how many vector blocks have been
traversed. The extent and size at each level of the tree are
used to compute offsets from the raw data into the contigu-
ous buffer, and type-specific optimizations are utilized to
reduce traversal overhead, such as substituting specialized
memory copy functions for vector types.
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2.2 GPU Architecture and Programming Model
NVIDIA’s Compute Unified Device Architecture (CUDA)
defines a programming abstraction for general-purpose com-
putation on GPUs (GPGPUs) [4]. For this paper, we focus
on CUDA and NVIDIA GPUs, although the algorithms can
be easily applied to other libraries, such as OpenCL.

CUDA presents the GPU as a CPU-driven coprocessor,
where the CPU issues asynchronous parallel kernels on the
GPU. Kernel launches and memory copies between CPU
memory and separate GPU memory are performed across
the PCIe bus, a high-latency, high-bandwidth operation; and
direct memory access (DMA) enables both kernel calls and
memory operations to be performed asynchronously.

GPUs have multiple streaming multiprocessors (SMs),
each consisting of multiple scalar processors (SPs), giving
hundreds of total available cores for computation at a given
time. The threading model provided is single instruction,
multiple thread, or SIMT, which executes a group of threads
(a warp, typically 32) in lockstep. SIMT, unlike SIMD
(single instruction, multiple data), allows threads to diverge
on branch instructions, where each branch is executed
serially until a convergence point is reached. Threads are
grouped in three-dimensional grids, or thread blocks, where
each block is statically allocated register and cache memory
and scheduled on an SM. Compared with CPU threads, GPU
threads are extremely lightweight and far less powerful but
make up for these limitations in sheer parallelism potential
and extremely low context switch overhead.

The main memory in GPUs is optimized for parallel
access in large chunks (typically 128 B) that are coalesced
by adjacent threads in a warp; if adjacent threads access
adjacent memory, the operations are combined into a single
memory transaction. While the main memory is a high-
latency, high-bandwidth resource with a small L2 cache,
each multiprocessor also contains a fast but small user-
controlled scratch cache, called shared memory.

Given these components, a number of optimization goals
can be defined when devising GPU algorithms. First, PCIe
bus activity should be minimized, because of high la-
tency and transfer rates that pale in comparison with GPU
hardware specifications. Second, memory access patterns
on the GPU should be regular and exhibit locality with
respect to threads. Third, the shared memory space should
be used as much as possible in order to minimize main
memory accesses. Fourth, GPU algorithms should exhibit
fine-grained parallelism so that the hardware can utilize
context switching to hide main memory access latency and
stalls in the instruction pipeline.

2.3 GPU-GPU Communication in MPI – MVAPICH
Recently, the MVAPICH team has utilized key develop-
ments in recent CUDA frameworks to enable the transparent
MPI communication of buffers in GPU memory [9], [10].
In particular, CUDA Unified Virtual Addressing can dis-
cern whether a pointer references GPU memory, allowing
MVAPICH to provide the same communication interface
for both CPU and GPU buffers. Currently, MVAPICH can
perform two types of communication with data in GPU

Fig. 2. Communication pattern necessitating GPU
packing (unpacking if arrows are reversed).

memory, relying solely on existing CUDA library functions:
contiguous buffers and strided buffers encodable by CUDA’s
two-dimensional memory copy routine (cudaMemcpy2D).
By contrast, we provide a datatype-processing algorithm
capable of representing and packing arbitrary datatypes. Our
methodology can be integrated into MVAPICH’s buffer-
pool-based framework in a simple manner, however.

3 IN-GPU DATATYPE PROCESSING

The communication data flow driving our datatype process-
ing is shown in Figure 2, using as an example the CS

datatype from Figure 1. Given a datatype definition, the
data is packed within GPU memory by using a kernel,
then is transferred to CPU memory to be communicated. To
optimize this flow, we organize the datatype representation
to be efficiently accessed by GPU threads. Furthermore, we
use a packing algorithm that fully utilizes GPU threading
resources, so that each thread reads a noncontiguous element
and places it into contiguous space, free of interthread
dependencies. For illustrative purposes, we assume that CS
is composed of a second vector type CSvec. In other
words, CSvec is a child datatype of CS.

3.1 MPI Datatype Encoding in GPU Memory

As opposed to the dynamic tree structure that MPI imple-
mentations such as dataloops typically use, GPU best prac-
tices suggest storing the type representation contiguously,
preferably loading into shared memory once upon kernel
invocation. However, many datatypes have a variable-length
encoding, such as the indexed and struct types. This
presents a problem because hundreds, if not thousands, of
threads may be resident on a single SM, and we cannot
assume that the available shared memory is sufficient to
store the full variable-length encoding.

Thus, we enforce a cache policy that all GPU threads
can benefit from, caching only the fixed-length parameter
space of the datatype(s). To facilitate this, the datatype
representation is separated into fixed- and variable-length
parameter spaces, using a serialization order corresponding
to a preorder traversal of the type tree. With variable-length
datatype fields left aside, we observe that the remaining type
tree can be stored in shared memory, as each type otherwise
requires a small amount of fixed-length memory to encode.
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TABLE 1
MPI datatypes and their fixed- and variable-length

parameters. The “Common” row contains parameters
common to all datatypes in our implementation.

Type Fixed Variable

common

count
size

extent
# child primitives

vector
stride

blocklength

subarray

dimension array sizes
lookaside offset subarray sizes

start offsets

indexed lookaside offset blocklengths
displacements

struct lookaside offset
blocklengths

displacements
child types

Fig. 3. Example type tree, serialized into GPU memory.
Branches in trees appear only for struct types.

See Table 1 for a listing of datatypes with their fixed- and
variable-length parameters.

Figure 3 shows an example type tree of arbitrary types.
The type tree is preorder-traversed, storing the fixed-length
parameters contiguously. The variable-length parameters are
stored in a separate contiguous buffer, called the lookaside
buffer. For each datatype with a variable-length parameter,
a pointer to the lookaside buffer is included into the type’s
fixed-length parameters. We call this the lookaside offset. In
order to control traversal and remove the explicit encoding
of primitives, a bitfield is used to specify the node type (leaf
vs. nonleaf), encoding the primitive type if the node is a leaf
(e.g., integer, floating point). This bitfield is also included
in the fixed-length parameter space.

Since the type tree is preorder-serialized, a top-down
traversal to a datum requires no additional linkage infor-
mation for nearly every type. The only exception is a
struct type with multiple derived datatype children, re-
quiring additional pointers in the variable-length parameters
to differentiate where in memory the children types are.

For most derived datatypes, the encoding is simple. For
example, the encoding for CS is the fixed parameters in rows
Common and vector in Table 1, followed by the same
parameters encoding CSvec. A single indexed type is
equally simple, although different from an implementation
point of view. It has a similarly small fixed-length storage
size, followed by a potentially large list of blocklengths and
displacements, requiring storage in GPU main memory.

3.2 Parallel GPU Packing Kernel
CPU-side datatype processing implementations, such as dat-
aloops, are based on serially filling fixed-size buffers from
noncontiguous data in CPU memory, leaving the possibility
for the coarse-grained parallelism of filling multiple buffers.
This runs contrary to best practices on the GPU, where a
finer grain of parallelism is critical to performance. Hence,
a straightforward “port” of existing methods is undesirable.
Section 3.2.1 addresses the mismatch in parallel packing
strategies, while Section 3.2.2 discusses the algorithm itself,
based on the parallel processing strategy and optimized
datatype representation.

3.2.1 Parallelism via Point-Based Retrieval
To enable a finer degree of parallelism than the coarse-
grained method of filling multiple packing buffers, we
enrich the dataloop’s datatype encoding with minimal ad-
ditional knowledge about child datatypes to produce a
dependency-free parallel traversal. In addition to caching
the size and extent of child datatypes, the number of
primitives can be similarly cached, allowing for fine-grained
parallelism on a per-primitive level.

Recall that datatypes, and hence any datatype encoding,
are formally represented as a list of �type, displacement�
pairs. To facilitate our parallel traversal, we assign a canon-
ical integer ID to each pair in the sequence. Then, given an
ID and the datatype encoding, we can compute in which part
of the encoded datatype the primitive appears. For example,
consider the vector type CS in Figure 1, with underlying
type MPI_DOUBLE (making CS a leaf type). There are
three blocks, each containing two primitives. Given the
canonical ID 3 (position 7 in the figure), we can conclude
that the primitive resides in block 1 of the type by the
computation “ID / blocklength” and is element 1 in the block
by the computation “ID % blocklength.” In other words, we
compute the block of the datatype in which the primitive
appears, then compute the location within that block. This
calculation can similarly be performed for other datatypes.

When defining derived datatypes, the number of prim-
itives encoded by a type gets propagated upward, so that
the parent type (e.g., CS) records the number of primi-
tives in each instance of the child datatype (e.g., CSvec).
When mapping canonical IDs to locations within a derived
datatype, computations must be performed with respect to
the number of primitives within the child datatype. So, if
CS has CSvec as a child type, the global ID mapping to
block and block offset in CS would occur by means of
the computations “(ID / # primitives) / blocklength” and
“(ID / # primitives) % blocklength,” where the number
of primitives is with respect to CSvec. Further, we can
recursively perform the same operations on CSvec by
binding the global ID to the local ID within CSvec, using
“(ID % # primitives).”

3.2.2 GPU Datatype Traversal Algorithm
The datatype representation and the parallel datatype traver-
sal strategy on the GPU yield a straightforward packing
algorithm with two favorable properties: constant per-thread
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storage, aside from the shared datatype representation, and
no interthread dependencies.

The traversal algorithm assigns each GPU thread to a
single primitive datum and traverses the type tree in a top-
down fashion, using the datatype’s extent, size, and number
of child type primitives to update read and write offsets. The
composed data structure type is based on Table 1. After
the “leaf” derived datatype is encountered, the offsets point
to the locations in memory of both the element to pack and
where to place it. Algorithm 1 shows the general process.
By “recursively” assigning the element ID to a pack based
on the type being visited on Line 9 (see Section 3.2.1), the
algorithm need merely track and update the memory read
and write offsets as each level of the tree is visited. Packing
and unpacking can be toggled by merely switching the
direction of the read/write on Line 12. On Line 17, pointer
jumping is necessary only for struct types with multiple
derived children; see Section 3.1. Note that adjacent threads
are implicitly assigned adjacent primitives defined by the
datatype, so locality between adjacent primitives enables
coalesced memory operations on them. Furthermore, on
the most common MPI datatypes (vector, subarray,
blockindexed), threads experience no branch divergence
because of a single code path.

Algorithm 1: Point-based traversal and packing of
arbitrary datatype.

input : user buffer: buffer with data to pack
input : type: serialized datatype, starting at root
input : ID: element to pack, in canonical order
output : pack buffer: packed buffer

1 // in, out: location in user/packed buffer, respectively
2 in ← 0, out ← 0
3 Load type fixed-length parameters into cache
4 while true do

5 // increment buffer offsets based on datatype
6 in ← in + inc_read(ID, type)
7 out ← out + inc_write(ID, type)
8 // compute element ID w.r.t. child type
9 ID ← ID % type.#primitives

10 if type is leaf then

11 // finished processing datatypes, perform r/w
12 pack buffer [out] ← user buffer [in]
13 break

14 else

15 // process child type; for non-struct,
16 // translates to type +=sizeof(type)
17 type ← type.child

The functions inc_read and inc_write are type-
dependent. Fortunately, they are simple to compute for the
contiguous, vector, subarray, and blockindex-
ed types, as each has a very regular structure. All but the
subarray type have an O(1) complexity, and the subarray
type has an O(d) complexity, where d is the number of
dimensions. The inc_read and inc_write functions
for the vector type computation are shown together in

Algorithm 2. The general strategy is to compute the block
that the primitive resides in, update the offsets appropriately,
and then “recurse” on the child type.

Algorithm 2: Read/write offset computation for the
vector type.
input : type: vector datatype
input : ID: primitive to pack, in canonical order
output: in inc, out inc: read/write offset increments

1 // offset w.r.t. child datatypes
2 count offset ← ID / type.#primitives
3 // offset w.r.t. vector blocks
4 block offset ← count offset / type.blocklength
5 // for each block, advance by stride bytes
6 // for each child datatype in block, advance by extent
7 in inc ← block offset ∗ type.stride + type.extent *

(count offset % type.blocklength)
8 // for each child datatype, advance by child size
9 out inc ← count offset ∗ type.size

10 return in inc, out inc

For the composite types CS and CSvec, Trace 3 shows
the execution trace of a single thread traversing to its
corresponding primitive. Note that the execution trace for
this type is the same across all threads launched.

For the datatypes with variable-length parameters, such
as indexed, the process is more nuanced. To avoid a
per-thread linear scan of the blocklengths, preprocessing
is performed to allow a logarithmic-time binary search.
First, a prefix-sum is performed on the indexed type’s list
of blocklengths. Then, given a count of n and a list of
prefix-summed blocklengths b0, b1, . . . , bn, the terminating
condition for thread (primitive) i in the binary search is

bh ≤ i/e < bh+1, (1)

where 0 ≤ h < n and e are the number of elements in the
child datatype. The additional bn term is needed to check
the condition at h = n− 1.

Trace 3: Execution trace of vector-of-vectors traversal
for a single thread.
input : user buffer: buffer to pack
input : ID: thread/datum ID
output : pack buffer: packed buffer

1 in ← out ← 0
2 Coordinated load of CS, CSvec into shared memory
3 type ← CS
4 Increment in, out using Alg. 2, with ID, type
5 ID ← ID % type.#primitives
6 Is type a leaf type? (no)
7 Increment type pointer by sizeof (vector type)
8 // type ← CSvec
9 Increment in, out using Alg. 2, with ID, type

10 ID ← ID % type.#primitives
11 Is type a leaf type? (yes)
12 pack buffer [out] ← user buffer [in]
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Having observed that all writes are performed into a
contiguous buffer and are thus highly coalesced by adjacent
GPU threads, we enable zero-copy memory transactions
in order to dramatically improve the packing operation.
Instead of packing the data into GPU main memory and
then performing a bulk copy on the packed buffer, current-
generation GPUs can utilize memory mapping of CPU
memory into the GPU’s memory space. Then, the streaming
multiprocessors can, in effect, write directly across the PCIe
bus into CPU main memory. Since threads write exactly
once and at the end of their traversal, memory mapping is a
perfect opportunity to obtain additional performance with
minimal effort, by avoiding the GPU main memory and
implicitly pipelining the computational and PCIe loads.

4 EVALUATION WITH MICROBENCHMARKS

We evaluate our datatypes processing methodology using
microbenchmarks of packing performance on numerous
MPI datatypes, comparing with CUDA alternatives as well
as optimized type-specific packing kernels. We also look
at full-context GPU-to-GPU communication through a non-
contiguous ping-pong test, comparing with MVAPICH ver-
sion 1.8. Moreover, we examine the effects of GPU resource
contention on packing and memory copy operations by
modifying the issuing order of packing and other operations.
For all tests, we used North Carolina State University’s ARC
cluster, with nodes containing an AMD Opteron 6128 at
800 MHz and an NVIDIA C2050 GPU with version 4.1 of
CUDA. Each node is connected by QDR InfiniBand. We
pin CPU memory used in transfers to enable DMA, and
we enable zero-copy for all datatypes but the struct type
during packing. An extended collection of experiments can
be found in Section 2 of the Supplementary Material.

4.1 Test Datatypes
To measure kernel overhead and provide an upper bound
on packing performance, we perform a baseline comparison
with the contiguous datatype, which can be satisfied
with a single memory copy call (cudaMemcpy).

To benchmark strided arrays such as column vectors, we
use a vector type, compared with the CUDA alternative of
cudaMemcpy2D. We fix the stride between blocks to 512
bytes, which enables maximum performance of the CUDA
operation; unaligned arrays greatly hamper CUDA’s perfor-
mance in this regard. Furthermore, we vary the blocklength
to analyze the performance implications of block width.

To benchmark array types outside the scope of vec-

tor representation, we use a four-dimensional subvolume
encoded as a subarray type, compared with iterative calls
to cudaMemcpy3D. We fix the containing volume to be
64 × 64 × 64 × 64 and pack/transfer a four-dimensional
hypercube of increasing size.

To benchmark an indexed type, for simplicity, we use
the same data format as in our test vector type. Other
datatypes would be used in practice and be much more
efficient, but this benchmark is a reasonable indicator of
indexed performance; varying blocklengths would cause

less divergence than the uniform blocklength would, and a
regular displacement allows us to control coalescence in a
fine-grained manner. For comparison, we transfer the data
block by block using cudaMemcpy.

We additionally evaluate the indexedblock type (ab-
breviated as idxblock in the experiments), which is
similar to the indexed type but has a uniform blocklength,
rendering the need to perform a binary search unnecessary.
For simplicity, we use the same data format as the indexed
and vector types. For comparison, we transfer the data
block by block using cudaMemcpy.

We use a struct type to test the effect of thread diver-
gence on writing. We use a simple C-style struct containing
an 8-byte double, two 4-byte ints, and a char, which
amounts to 24 bytes with padding. For comparison we copy
the extent of each struct using cudaMemcpy. Further-
more, we disable the use of zero-copy for this type, as
the uncoalesced write pattern induced by thread divergence
leads to the issuance of a PCIe transaction for each struct
member, causing significant performance regression.

4.2 Noncontiguous Packing Performance

For each datatype presented in Section 4.1, we evaluate the
general performance of packing from GPU memory into
CPU memory, with respect to the size of the packed buffer.
Figures 4 shows these experiments compared with their re-
spective CUDA alternatives. Furthermore, we compare with
hand-coded packing routines in order to test the overhead
of our generic packing methodology.

A number of interesting trends can be observed for the
different datatypes. First, since a relatively large gap exists
between command latency and throughput, transfers on the
lower KB level are latency-bound, and thus very small abso-
lute differences are seen between the CUDA API calls and
the packing kernel. Given the current architecture of discrete
GPUs, little can be done to improve these results, although
combined CPU and GPU architectures, such as AMD’s
Fusion [16], show promise in bridging this performance gap
in the future. Furthermore, the latency of issuing kernels is
slightly larger than that of issuing memory copies, adversely
affecting our kernelized packing for smaller inputs (though
only on the order of microseconds).

Second, the packing kernel is clearly preferable for
types that do not have a CUDA equivalent (e.g.,
cudaMemcpy2D), because of the latency in initiating each
blockwise memory copy. Blockwise memory copies, such
as for the indexed type, could compete with the packing
kernel only for extremely large block sizes.

For the types that do have a CUDA equivalent, the results
are more nuanced. Besides latency, performance is largely
a function of the data layout: for two-dimensional memory
copies, each block must be wide enough to saturate the
bus for best performance. While the packing kernel is up
to 20 times faster for an 8-byte-blocklength vector, the
memory copy outperforms the packing kernel in all cases
for a 128-byte-blocklength vector, especially for small
and medium-sized inputs, because of the additional kernel
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Fig. 4. Time-to-CPU packing time using the CUDA API, and corresponding relative performance of packing kernel.

latency. The relative performance for large blocks converges
as the PCIe bandwidth is reached.

The four-dimensional subarray type, despite being rea-
sonably mapped to the CUDA API, sees major performance
improvements when using a kernelized packing operation.
Since the three-dimensional memory copies must be made
iteratively in order to transfer the type, the latency is aggre-
gated through the copies and hurts overall performance.

Compared with type-specific implementations, the
generic packing algorithm performs well, with little
difference in performance. The performance of each type
except the struct type show an approximately 20–30%
overhead, reaching near parity for buffers larger than
a megabyte (in packed form). This overhead, however,
amounts to between about two and five microseconds
for most inputs. The differences in performance between
the type-specific and generic algorithms are due to the
overhead of loading the type representation and instruction
overhead from supporting arbitrary type representations.
The differences in the struct implementations (a 20%
to 80% overhead compared with that os the hand-coded
version) are a result of hard-coding the relative location
of each struct primitive, benefiting from compiler
optimization and greatly simplified traversal logic, and is
an exceptional, nongeneral case. For more detailed results,
refer to Section 2.1 of the Supplementary Material.

Since the vector type is one of the more widely used
MPI datatypes and performance is highly dependent on the
parameterization, we further explore the vector type’s
performance characteristics in Figure 5. We fix the number
of blocks and compare the performance of the packing
kernel and the two-dimensional memory copy for varying
blocklengths. As seen in the figure, the performance of
CUDA is highly dependent on the blocklength. Blocklengths
that are multiples of 32 bytes perform best, but all others
experience significant performance regression. Similar per-
formance characteristics are seen when varying the stride
parameter, although these are not shown in the paper.
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Fig. 5. vector pack performance vs. cudaMemcpy2D.

4.3 Full Evaluation: GPU-to-GPU Communication
We now assess the packing performance within the context
of MPI point-to-point communication. Because of the in-
efficient performance of CUDA-based methods on irregular
data (e.g., indexed, struct), we consider only the pack-
ing of a vector type of varying blocklength; an MPI Send
where data is packed at the rate of 4 MB per second will
not perform well. For this test, version 1 of GPUDirect is
used, allowing both CUDA and InfiniBand drivers to pin
the same memory and avoid extraneous memory copies.
Figure 6 shows the completion time of a GPU-to-GPU ping-
pong benchmark. The sender packs the vector data from
GPU memory into contiguous CPU memory, immediately
followed by a send operation, while the receiver unpacks the
vector into GPU memory. This process is then repeated
back to the original sender.

The efficiency of the communication is again dependent
on the data layout. A small blocklength and large buffer
size, which favors the packing operation, cause a large
relative performance increase compared with using the two-
dimensional memory copy. A larger blocklength causes
the memory copy to be largely equivalent to the packing
operation. For small message sizes, GPU-to-CPU latency is
the primary cost, which in this benchmark is felt four times
over. Network latency, by comparison, was much lower. For
medium- to large-sized messages, the measured network
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Fig. 6. GPU-to-GPU ping-pong test, on the vector type with 8-, 32-, and 128-byte blocks, compared with
cudaMemcpy2D. The vector stride is aligned to maximize CUDA performance.

bandwidth of 2.0 GB/s formed the bottleneck, which is
much lower than the packing and memory copy throughput.

Compared with MVAPICH, our packing methodology
performs roughly equivalently for small- and medium-sized
buffers and begins to outperform MVAPICH’s vector com-
munication algorithm for large-sized buffers. MVAPICH
uses a specialized communication routine for vectors, per-
forming a two-dimensional memory copy into GPU memory
and then transferring the now-contiguous data to the CPU.
While this avoids poor PCIe utilization from narrow vector
blocklengths as seen from two-dimensional copying directly
to the CPU, the approach is more memory intensive, using
two sets of memory operations. Furthermore, no overlapping
of PCIe and packing activity is performed. Through our use
of zero-copy, both of these problems are overcome.

4.4 Resource Contention Effects on Packing
The packing methodology was discussed with an underlying
assumption of resource availability and without consider-
ation of scenarios where packing could actually be detri-
mental to overall performance. For instance, what if a user
initiates a send for data residing on the GPU while a fully
occupant kernel is running? In the worst case, the scheduling
policy of current GPUs—which schedules blocks to run to
completion and allows only a single kernel to be run on each
multiprocessor—can easily lead to starvation of a packing
kernel, in turn leading to unacceptably high wait times.

A number of communication patterns could introduce
resource contention, centered on concurrently performing
communication and other operations. At the computational
level, communication can be performed asynchronously in
order to enable computational overlap, causing the packing
operation to coincide with that computation. Furthermore,
PCIe transfers can be occurring while a communication
operation is being performed, such as in CPU-moderated
algorithms that follow an iterative setup-compute-collect
model, that clash with packed data transfer. A combination
of these can also occur, such as when multiple users or MPI
processes are accessing the same underlying hardware.

To induce these contention scenarios, we use a few simple
operations to stress the resource in question. We call these
the application (user) operations. For both directions of
PCIe activity, we merely issue a memory copy. For SM
contention, we utilize a vector add operation. The reason we
do so is to tie it closely to a packing operation (using the

vector type), with packing time similar to the application
operation time.

The parameter space for this experiment is enormous, so
we chose a representative exemplar that best highlights the
contention trends. For each of the following experiments,
we used a vector of total size 16 MB and defined the vec-
tor datatype to have a count of 262,144, a blocklength
of 8, and a stride of 64 bytes. Rather than choosing more
realistic parameter sets (these cover the entire buffer), we
chose these values so that each operation has a similar run
time, in order to simplify analysis. Since the trends are based
on GPU schedule operation, we expect similar results for
other datatypes and operations, although on differing scales.

Our experimental results are shown in Table 2. We
time each operation in isolation as a baseline. To measure
contention effects induced by the first-come, first-serve GPU
scheduling policy, we initiate one of the operations (either
application operation or pack/copy) followed by the other
operation, measuring the completion time of the latter. For
example, the row “User→Pack” initiates the application op-
eration followed by the packing operation. We also measure
the completion time of both operations as a whole, to assess
the degree of overlap between the operations.

For the SM experiment, the order of initiation is critical.
When using the packing kernel, either operation, when
initiated after the other, gets starved out, starting only when
SMs are available. The two-dimensional memory copy,
avoiding the SMs entirely, does not suffer this problem
and sees no degradation in performance. In other words,
the direct memory access (DMA) engine handles the copy
operation, leaving the GPU’s SMs untouched.

For the GPU-to-CPU PCIe experiment, both the applica-
tion operation and the pack/memory copies suffer, since both
must use the same lane of the bridge. In the User→Pack
case, however, the scheduling mechanism seems to treat the
SM-issued bus transactions more favorably. Using CUDA
memory copies instead of the pack does not overlap at all
with the application memory copy and vice versa, since
the transfers are completely serialized on the CPU end
(regardless of using different CUDA streams).

For the CPU-to-GPU PCIe experiment, while we would
expect an insignificant degree of contention because of the
operations using different PCIe lanes (PCIe is full duplex),
we actually see some degradation in the time taken, although
the totals for issuing both concurrently are much less than
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TABLE 2
User workloads in contention with the pack kernel and CUDA API calls, using the vector type, in milliseconds.

Type Proc.: time between initialization of the latter packing/CUDA operation and it’s completion.

SM PCIe (CPU→GPU) PCIe (GPU→CPU)

Workload Order User Type Proc. Total User Type Proc. Total User Type Proc. Total Time

Serialized (Pack) 1.00 2.55 3.55 3.34 2.55 5.89 2.56 2.55 5.11
Serialized (CUDA) 2.96 3.96 2.97 6.31 2.97 5.53
User→Pack - 3.52 3.55 - 3.65 4.08 - 3.18 5.09
User→CUDA - 3.00 3.03 - 3.66 4.06 - 5.53 5.54
Pack→User 3.53 - 3.56 4.08 - 4.11 5.08 - 5.11
CUDA→User 1.03 - 3.00 4.05 - 4.07 5.53 - 5.53

that for the completely serial case. We cannot explain this
behavior with absolute certainty, but we hypothesize it to be
an artifact of the scheduler or a small degree of contention
with respect to transferring kernel parameters.

More complex contention scenarios, such as mixed
PCIe/SM loads and multiple users, are not shown because of
the countless possibilities they entail, although we can make
a few observations. For algorithm patterns that interleave
PCIe transfers and kernels, the scheduler has more flexibility
to insert other operations between them. Therefore, the
starvation would not be as strict as that shown in Table 2.
Perhaps, in future GPU architectures, advanced schedulers
will be able to enable resource sharing on a finer-grained
level, increasing the fairness with respect to performance of
multiple application contexts hitting on the same hardware.

5 EVALUATION WITH APPLICATIONS
In this section, we evaluate GPU datatype processing on
both a stencil computation and an analysis code.

5.1 Stencil Computation
To evaluate our packing methodology on a publicly avail-
able, commonly used application kernel, we modified the
parallel, two-dimensional, nine-point stencil code from the
Scalable Heterogeneous Computing (SHOC) benchmarking
suite [17]. Specifically, the original halo exchange consists
of up to two contiguous exchanges (with the “north” and
“south” neighbors) and up to two strided exchanges (with
the “east” and “west” neighbors). The GPU stencil bench-
mark copies all halo regions into CPU memory, performs the
halo exchange, and transfers all results back to the GPU. We
replace the noncontiguous GPU copying code, which relies
on CUDA DMA, with our packing methodology.

Table 3 shows mean stencil GFLOPS for four nodes for
varying per-node problem sizes and for single- and double-
precision floating-point data. As is shown, the time using
a packing kernel is nearly equivalent to that using CUDA
DMA. We attribute the likeness in performance to the ratio
of computation to communication in the overall stencil cost
as well as to the fact that half of the transfers performed
are over contiguous data.

5.2 Analysis Code
The next application benchmark is taken from the analysis
of cosmological simulations. The HACC [18] cosmology

TABLE 3
SHOC stencil double-precision (DP) and

single-precision (SP) mean GFLOPS per node, using
both CUDA DMA and kernelized packing to perform

the halo exchange.

Per-Node Size DP GFLOPS SP GFLOPS

w/CUDA w/Pack w/CUDA w/Pack
128x128 3.76 3.84 3.80 3.87
256x256 13.79 13.81 15.12 15.14
512x512 40.05 40.82 46.87 47.80

1024x1024 88.34 87.35 125.82 124.88
2048x2048 130.63 130.97 213.73 214.72

struct vblock_t {
int num_verts, num_cells;

int num_cell_verts, num_complete_cells;

int num cell_faces, num_face_verts;

int num_orig_particles;

float mins[3], maxs[3];

float *vertices, *sites;

float *areas, *vols;

int *cells, *face_verts;

int *num_cell_faces, *num_face_verts;

};

Fig. 7. HACC analysis data structure to pack.

code is a framework for N-body particle simulations of dark
matter tracer particles. Some analysis tasks such as iden-
tifying cosmological voids are enabled by the conversion
of raw particle data to a Voronoi tessellation [19], which
converts a point cloud to a polyhedral mesh. When executed
in a spatially decomposed data-parallel manner, each MPI
process computes the data structure shown in Figure 7.

When writing and reading results from parallel storage
using MPI-IO, the data in Figure 7 are accessed by using
a single custom MPI datatype by each MPI process. This
is a packing challenge because it contains a combination
of integer and floating-point scalars and vectors, together
with pointers that need to be followed in order to access
the actual data members. Each process contains a different
number of particles, hence different lengths of buffers that
need to be fetched. Traversing the datatype results in a set
of contiguous pieces combined in a noncontiguous fashion.

To assess the performance of packing this datatype, we
first logged the memory accesses of the CPU packing done
by MPI for a test run of 32,768 dark matter tracer particles
converted to a Voronoi mesh using eight MPI processes.
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TABLE 4
HACC analysis structure packing times in milliseconds

by rank. CPU Ref.: reference CPU packing time.
CUDA DMA: GPU-to-CPU packing time using memory

copies for each GPU buffer. Kernel : GPU-to-CPU
kernelized packing time.

Rank CPU Ref. CUDA DMA Kernel

0 0.96 0.43 0.35
1 0.40 0.25 0.16
2 1.68 0.65 0.57
3 1.53 0.61 0.53
4 0.92 0.42 0.34
5 0.26 0.19 0.11
6 0.83 0.39 0.31
7 0.55 0.29 0.20

Each process produced a trace that logged the base type,
quantity, and starting address associated with fetching each
structure member.

We then regenerated the identical memory access pattern
in our benchmark and compared the performance of three
versions of datatype packing. Table 4 shows those results.
“CPU Ref.” is the time to pack the original MPI data type
using the CPU only. The “CUDA DMA” column is the time
to pack the GPU-resident data using a sequence of GPU-
to-CPU copies, one for each struct field, solely using
cudaMemcpy. The “Kernel” column is our GPU packing
kernel version. Our results show a 13–43% reduction in
time-to-CPU by using packing, with a median reduction of
20.8%. We attribute these results to the reduced latency costs
in issuing a single kernel versus multiple copies.

6 CONCLUDING REMARKS
Since GPUs are expected to continue evolving in order to be
capable of more general-purpose computations, they need to
be integrated into widely used libraries in the HPC commu-
nity, such as MPI. We have presented one important aspect
toward this end: the processing of arbitrary, noncontiguous
GPU-resident data. We have shown that kernelizing the
packing operation leads to huge performance improvements
in datatypes that describe two nonexclusive data layouts:
highly noncontiguous data and irregularly located data.
These cases are particularly important as GPUs continue
to branch out in terms of the complexity of operations
performed on them; algorithms could have local access
patterns that differ from global communication patterns, and
if efficient packing is available, applications could focus
more on optimizing the local patterns.

Overall, we view our method as complementing the
goal of robust integration of GPU technology into high-
performance data movement frameworks such as MPI, as
well as a baseline for future MPI library implementations.
A complete solution to GPU data movement within MPI
not only would minimize internal memory copies and fully
utilize current/future architecture-specific optimizations but
also would be able to flexibly determine the best methodol-
ogy for transferring the data, especially noncontiguous data.
Refer to Section 3 of the Supplementary Material for an
extended discussion of these concerns.
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